I (a) If f is C' on (a,b), then f is Lipschitz on $[c,d] \subset (a,b)$.

Pf: Since f is C', f'is continuous

on [c,d].

Then there exists some M > 0 such that

|f'(x)| < M for any x \in [c,d].

For any x, y \in [c,d], by Mean Value Theorem,

there exists 3 between x and y such that

f(x) - f(y) = f'(3)(x-y). Then |f(x) - f(y)| = |f'(3)||x-y| < M|x-y|.

(b) Let f(x) = \ x \sim \ x , x \neq 0, x = 0. Show that f is continuous at o but not differentiable at o Pf: Since |sint| \le 1, -x \le f(x) \le x. Since lim(-x)= lim x = 0, by Squeeze Theorem, lim f(x) = 0 = f(0). Hence f is continuous at o Note that $\frac{f(x)-f(0)}{x-0} = \frac{x\sin \frac{1}{x}}{x} = \sin \frac{1}{x}$ Take $x_n = \frac{1}{2\pi n}$, $y_n = \frac{1}{2\pi n + \frac{1}{2}}$ Them Xu >0, yu >0 and sint >0, sinty >1 Therefore lim fix-fiv) = lim sint does not exist. Hence f is not differentiable at o

2(a) Let fER(a, b]. Then there exists a sequence (en) of step functions such that lim & la(x)dx = for foodx Rock: Actually, you are expected to find such sequence (In) of step functions with In < f. But due to the unclear statement of the question, $l_n(x) = \int_{a}^{b} tw dx$ is also acceptable.

Pf: Since ferca, b), Safandx = L(f).

By definition, there exists a sequence (Pn) of partitions such that $L(f, P_n) > \int_{\alpha}^{b} f(w) dx - h$.

Write Pn=(x0,...,xm)

and (x)= I inf(f(x): x \((x_{k-1}, x_k) \) \(\

Then $\int_{\alpha}^{b} (\ell_{n}(x) dx = \sum_{k=1}^{m_{n}} \inf \{f(x): [\lambda_{k-1}, \lambda_{k}]\} (\lambda_{k} - \lambda_{k-1})$ $= L(f, P_n) > \int_a^b f(x) dx - \frac{1}{n}$

Clearly, en = f.

Then $\int_{a}^{b} \ell_{n}(x)dx \leq \int_{a}^{b} f(x)dx$.

By Squeeze Theorem, $\lim_{n\to\infty} \int_{a}^{b} \ell_{n}(x)dx = \int_{a}^{b} f(x)dx$.

(b) There exists a sequence (gn) of continuous functions such that \int f(x) dx = lim \int gn(x) dx. Rmk: We shall prove I (gw) s.t. Sa |gn(x) - f(x) | dx >0 But gn(x) = 1 foods is acceptable in the test. Pf: We adjust the step functions la in (a) to get continuous functions. But (a), \[\begin{aligned} & \length{(x)} - \fix) \ldx \end{aligned} = Safundx - Safundx -> o as n->0 By Triangle Inequality, $\int_{a}^{b} |g_{n}(x) - f(x)| dx \leq \int_{a}^{b} |g_{n}(x) - f(x)| dx + \int_{a}^{b} |g_{n}(x) - g_{n}(x)| dx$ It cuffices to find continuous gn such that [] | (en(x) - gn(x) | dx -> 0 as n >> 19n1<M

Take gn as the piecenise linear functions like the red graph. Then $\int |\ell_n(x) - g_n(x)| dx \le 2M \cdot \frac{2}{4nMm_n} \cdot m_n = \frac{1}{n} \Rightarrow 0$ as 19 mu - fex) (dx -> 0 as n>00.

3 (a) Let fn, f be differentiable functions on (a,b) Suppose fr(c) -> fcc, for some CE(a,b) and $f'_n \Rightarrow f' \text{ on } (a, b).$ Then fin = f on (a,b). Pt: Fix & >0. Note that |fn(x) - f(x)| = |fn(c) - f(c)| + (fn - f)(x) - (fn - f)(c)| = $|f_n(c) - f(c)| + |f_n' - f')(3)| |x-c|$ for some 3 between x and < |fuc)-f(c) + |fu(3)-f(3)|(b-a) Since facc) >fcc) as now, there exists NIEM such that for any NZN, Ifacco - fecole = Since thist, there exists NZEN such that for any u=Nz, for any y ∈ (a, b), $|f'_{n}(y) - f'(y)| < \frac{\varepsilon}{2(b-a)}$ Take N= max (N, Nz) For any NZN, for any Xt(a,b)

 $|f_{u(x)} - f_{(x)}| \le |f_{u(c)} - f_{(c)}| + |f'_{u}(3) - f'(3)|_{(b-a)}$ $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2(b-a)}(b-a) = \varepsilon$

Hence fr = f. on (a,b).

The converse is false.

 $x^{n}(1-x) = 0$ on (0,1) (See Tutorial (0,1)) $(x^{n}(1-x))' = nx^{n-1}(1-x) - x^{n}$

If $(x^n(1-x))' \ni 0$, since $nx^n(1-x)\ni 0$, we get $x^n\ni 0$ on (0,1). Contractiction!